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PREFACE 
 
The Kansas Department of Transportation’s (KDOT) Kansas Transportation Research and New-
Developments (K-TRAN) Research Program funded this research project. It is an ongoing, 
cooperative and comprehensive research program addressing transportation needs of the state of 
Kansas utilizing academic and research resources from KDOT, Kansas State University and the 
University of Kansas. Transportation professionals in KDOT and the universities jointly develop 
the projects included in the research program. 
 
 
 

NOTICE 
 
The authors and the state of Kansas do not endorse products or manufacturers. Trade and 
manufacturers names appear herein solely because they are considered essential to the object of 
this report.  
 
This information is available in alternative accessible formats. To obtain an alternative format, 
contact the Office of Public Affairs, Kansas Department of Transportation, 700 SW Harrison, 2nd 
Floor – West Wing, Topeka, Kansas 66603-3745 or phone (785) 296-3585 (Voice) (TDD). 
 
 
 

DISCLAIMER 
 
The contents of this report reflect the views of the authors who are responsible for the facts and 
accuracy of the data presented herein. The contents do not necessarily reflect the views or the 
policies of the state of Kansas. This report does not constitute a standard, specification or 
regulation. 
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Abstract 

Range anxiety is a significant contributor to consumer reticence when purchasing Electric 

Vehicles (EVs); thus, industry is pushing the range of EVs by enhancing lithium-ion battery 

chemistry. As a result, new commercial EVs readily achieve over 200 miles of range as found by 

the United States Environmental Protection Agency (EPA). However, this measured range by the 

EPA is often not the case when real-world conditions are encountered. The choice of testing 

indoors in idealized conditions (i.e., 77 ºF with the cabin conditioning system turned off) can belie 

the true range of EVs. This can be particularly problematic as government entities look to add 

charging stations nationwide. Any use of range that feeds into planning purposes must include on-

road information such as wind (particularly important for the authors’ home state of Kansas) and 

other facets like road grade and ambient temperature. Thus, this effort describes the simplest model 

that incorporates all important factors that impact the range of an EV. Calibration of the model to 

EPA tests found an average deviation of 0.45 and 0.57 miles for the highway and city ranges, 

respectively, over seven commercial EVs; hence, demonstrating good model accuracy. Subsequent 

predictions found significant losses based on the impact of road grade, wind, and vehicle speed 

over a Kansas interstate highway. In addition, up to 57.8% and 37.5% losses in range were found 

when simulating vehicles at 20 ºF and 95 ºF, respectively. Simulated aging of the vehicle battery 

pack due to cycling demonstrated range losses up to 53.1% at 100,000 miles. Model extensions to 

rain and snow illustrated corresponding losses based on the level of precipitation on the road. 

Finally, all model outcomes were translated into simple Excel spreadsheets that can be used in 

predicting the range of a generic EV over Kansas-centric roads. 
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Chapter 1: Introduction 

While battery technology has improved significantly over the last decade, range anxiety is 

still a primary consideration for consumers when contemplating the purchase of an Electric 

Vehicle (EV) (Pevec et al., 2020). A recent survey by Autolist found that EV range tops the 

consumers’ list of priorities (Autolist Analytics Team, 2021) with one of their earlier surveys 

indicating that the majority of respondents considered 300 miles of range to be sufficient 

(Voelcker, 2017). While most commercially available EVs are now able to achieve greater than 

200 miles range, with the Tesla Model 3 sporting a 353 mile range according to the Environmental 

Protection Agency (EPA), the actual on-road range of EVs is based on a variety of factors (e.g., 

weather, weight, road grade, and cabin conditioning) and can be significantly different than the 

ideal conditions employed by the EPA during the Society of Automotive Engineers (SAE) J1634 

test (77 ºF using a chassis dynamometer with the cabin conditioning system turned off) (SAE 

J1634, 2017). Thus, the varying range experienced by EV drivers can be problematic when 

designing a charging infrastructure to handle their range anxiety while considering the travel route 

and weather conditions (Ahn & Yeo, 2015). This is especially true in Kansas when considering 

the wide range of conditions encountered by Kansas drivers, in addition to being the second 

windiest state in the union (Samenow, 2016) while also encountering all four seasons with 

potentially significant rainfall and snow (Lin et al., 2017). 

Additional factors that can cause EPA vehicle range tests to misrepresent real-world 

driving include greater passenger and cargo loads that will increase energy consumption (Weiss et 

al., 2020). Furthermore, EPA tests also do not consider road grade that can result in increased or 

decreased range depending on the slope gradient (Liu et al., 2017). Al-Wreikat et al. (2021) found 

that a 3% road grade could increase energy consumption by 50% or more. However, a downward 

grade can be beneficial, as gravity reduces the traction force required to maintain a certain speed, 

while also potentially recharging the battery pack through regenerative braking. This ability to 

recharge the battery pack while braking is one reason why EVs typically demonstrate a greater 

range in the city than on the highway, counter to more traditional internal combustion engine 

vehicles. 
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Other significant impacts on EV range are the rolling resistance and aerodynamic drag. 

Under low speeds when road grade is negligible, rolling resistance and drag make up the total 

forces acting on the vehicle that must be overcome (Pavlat & Diller, 1993). While the EPA test 

does include a combined factor for both of these components, the impact of wind speed and 

direction on drag is not considered (Yi & Bauer, 2017; Sarrafan et al., 2018). In addition, the 

increased rolling resistance due to underinflated tires can lead to EV range losses of a few percent 

(Tang et al., 2020). Weather can also play a substantial role in rolling resistance as rain can increase 

this resistance by up to 10% (Tannahill et al., 2016). Analogously, snow can increase rolling 

resistance by 6-9% depending on if the snow is old or freshly fallen (Laurikko et al., 2012). Thus, 

researchers should incorporate these effects into their models (Sarrafan et al., 2017). 

Weather further contributes to decreases in EV range when ambient temperature is 

considered. This is primarily due to energy being used for cabin conditioning and thermal 

conditioning of the battery pack. Higher temperatures typically accelerate the fading of the battery 

or decrease the efficiency of the motor, as Hao et al. (2020) found that electrical consumption 

increased 126.3 Btu/mi with every 9 °F over 82.4 °F (2.3 kWh/100 km with every 5 ºC over 28 

ºC.) Furthermore, Samadani et al. (2014) showed that the air conditioning system can reduce range 

by 14%, 22%, and 20% for the HWFET, UDDS, and US06 standard drive cycles, respectively, 

while also increasing battery degradation. Here, the impact of higher temperatures on range is not 

as significant as the influence of colder temperatures. Without a heater in use, the average range 

from different driving cycles will decrease up to 20-30% in cold weather (Laurikko et al., 2012). 

Conversely, when the full cabin heating is in use, the range may be reduced by as much as 60% 

(Horrein et al., 2017; Szumska & Jurecki, 2021). 

Apart from mechanical or electrical losses, the driving method and behavior of the driver 

can influence the range of an EV. Faster accelerations have been found to increase the energy 

intensity by 4% over the slowest acceleration simulated for a 1000 kg EV (Mruzek et al., 2016). 

In general, aggressive driving increases energy consumption between 16% and 43% when 

compared to passive driving (Laurikko et al., 2012; Al-Wreikat et al., 2021). This is caused by an 

inefficient use of the vehicle’s acceleration and braking mechanisms (Laurikko et al., 2012). 
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Given this wide variance in energy usage and corresponding EV range, it is important for 

local municipalities and state agencies to have a simulation tool that can estimate the range of 

commercial EVs in their local environment. This can then be used to facilitate the process planning 

of an effective charging station infrastructure. While extensive models exist for motors, batteries, 

air conditioning, and other aspects of EVs, this effort endeavors to generate a simple overarching 

model that includes all necessary variables to estimate the range of EVs on local roads based on 

the time of year. Overall, six commercial EVs were calibrated to their EPA stated range and 

parametric studies were completed to understand the different aspects that influence range over 

the following Kansas roads: I-70, I-35, US-54, and I-135. In addition, the model is employed to 

predict the range of an EV that is not commercially available yet as an exercise to understand how 

the real range of the vehicle in Kansas compares to the EPA stated range. The subsequent sections 

of this work include a description of the model developed, followed by a summary of the resulting 

parametric studies. 
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Chapter 2: Modeling 

A previous effort by one of the authors included the estimation of battery electric heavy-

duty tractor trailers using a model based on the conservation of momentum (i.e., Newton’s second 

law of motion) (Depcik et al., 2019). This work utilized a similar model including additions to 

handle wind direction based on travel direction and electrical power requirements. Overall, the 

resultant acceleration or deceleration force (𝐹𝐹𝑥𝑥) was determined from the tractive (𝐹𝐹T), 

aerodynamic drag (𝐹𝐹D), rolling resistance (𝐹𝐹R), and gradation forces (𝐹𝐹G) as follows: 

Equation 2.1 
𝑭𝑭𝒙𝒙 =  𝑭𝑭𝐓𝐓 −  𝑭𝑭𝐃𝐃 − 𝑭𝑭𝐑𝐑 − 𝑭𝑭𝐆𝐆 

However, when simulating the SAE J1634 test to determine the highway and city mileage 

range (SAE J1634, 2017), the drag and rolling resistance forces are combined and accounted for 

by a chassis dynamometer via a polynomial function (Kadijk & Ligterink, 2012) with the 

coefficients published online by the EPA (U.S. Environmental Protection Agency, n.d.): 

Equation 2.2 
𝑭𝑭𝐃𝐃 + 𝑭𝑭𝐑𝐑 =  𝒂𝒂𝑬𝑬𝑬𝑬𝑬𝑬 + 𝒃𝒃𝑬𝑬𝑬𝑬𝑬𝑬𝑽𝑽� + 𝒄𝒄𝑬𝑬𝑬𝑬𝑬𝑬𝑽𝑽�𝟐𝟐 

Where 𝑉𝑉�  is the average velocity of the vehicle between two successive input data points 

(velocity is a specified input parameter) represented by the superscript n: 

Equation 2.3 

𝑽𝑽𝒏𝒏+𝟏𝟏 + 𝑽𝑽𝒏𝒏
𝑽𝑽� =   

𝟐𝟐

Otherwise, the forces are independent, and the drag force is represented as: 

Equation 2.4 

𝟏𝟏
𝑭𝑭𝐃𝐃 =  𝝆𝝆𝑬𝑬

𝟐𝟐 𝒇𝒇𝑪𝑪𝑫𝑫(𝑽𝑽𝒆𝒆𝒇𝒇𝒇𝒇𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄)𝟐𝟐   

Where 𝜌𝜌 is the density of the air (determined using the ideal gas law) and CD is the 

coefficient of drag. The frontal area of the vehicle (Af) was determined using a computer program 

that digitized the vehicle front view that was calibrated to a reference value for the overall width 

of the vehicle (SketchAndCalc, n.d.). 
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2.1 Wind Speed and Direction 

Equation 2.5 
𝑽𝑽𝒆𝒆𝒆𝒆𝒆𝒆𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄 = 𝑽𝑽� − 𝑽𝑽𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄   

The effective vehicle velocity (Veff) is a function of the yaw angle of the vehicle (𝜑𝜑) and 

the wind speed (Vwind): 

While yaw can be important, it was neglected here because of the difficulty involved in 

calculating it accurately over the length of the route. To account for the angle of wind relative to 

the direction of motion (𝜗𝜗), latitude (lat) and longitude (lon) coordinates were employed from 

Global Positioning System (GPS) data that can also provide elevation (E) data. Between two 

successive GPS data points, the change in distance (d) was determined as: 

Equation 2.6 
𝒅𝒅   

Where REarth is Earth’s radius (2.0926·107 ft) (6378.1·103 m) (Prša et al., 2016) and c is 

determined by (Sinnott, 1984): 

Equation 2.7 
𝒄𝒄 = 𝟐𝟐 ∙ 𝒂𝒂𝑬𝑬𝒂𝒂𝒏𝒏𝟐𝟐�√𝒂𝒂,√𝟏𝟏 − 𝒂𝒂� 

Equation 2.8 

∆𝒇𝒇 ∆𝒍𝒍
𝒂𝒂 = 𝒄𝒄𝒘𝒘𝒏𝒏𝟐𝟐 � � + 𝒄𝒄𝒄𝒄𝒄𝒄(𝒍𝒍𝒂𝒂𝑬𝑬𝒏𝒏)𝒄𝒄𝒄𝒄𝒄𝒄(𝒍𝒍𝒂𝒂𝑬𝑬𝒏𝒏+𝟏𝟏)𝒄𝒄𝒘𝒘𝒏𝒏𝟐𝟐 � � 

𝟐𝟐 𝟐𝟐

Equation 2.9 
∆𝒇𝒇 = 𝒍𝒍𝒂𝒂𝑬𝑬𝒏𝒏+𝟏𝟏 − 𝒍𝒍𝒂𝒂𝑬𝑬𝒏𝒏 

Equation 2.10 
∆𝒍𝒍 = 𝒍𝒍𝒄𝒄𝒏𝒏𝒏𝒏+𝟏𝟏 − 𝒍𝒍𝒄𝒄𝒏𝒏𝒏𝒏 

The bearing angle of the vehicle (βbr) was also obtained from GPS data and altered to 

correspond to a 360° North (N)-South (S)/East (E)-West (W) map driving direction (qdr): 

Equation 2.11 

𝟒𝟒𝟒𝟒𝟒𝟒 −  𝜷𝜷 , 𝒙𝒙 < 𝟒𝟒 𝒂𝒂𝒏𝒏𝒘𝒘 𝒚𝒚 > 𝟒𝟒𝒒𝒒 = � 𝒃𝒃𝑬𝑬
𝒘𝒘𝑬𝑬  𝟗𝟗𝟒𝟒 −  𝜷𝜷𝒃𝒃𝑬𝑬, 𝒆𝒆𝒍𝒍𝒄𝒄𝒆𝒆

Equation 2.12 
𝜷𝜷𝒃𝒃𝑬𝑬 = 𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝟐𝟐 (𝒚𝒚,𝒙𝒙) 
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The output is an angle from 0 to π or 0 to – π. Thus, qdr was obtained through a piecewise 

function that accounts for the quadrant of the resulting vector and converts the computed angle 

from the “unit circle” frame to the N-S/E-W frame. The x and y components were determined, 

respectively, as: 

Equation 2.13 
𝒙𝒙 = 𝒄𝒄𝒄𝒄𝒄𝒄(𝒍𝒍𝒂𝒂𝑬𝑬𝒏𝒏+𝟏𝟏)𝒄𝒄𝒘𝒘𝒏𝒏(∆𝒍𝒍) 

Equation 2.14 
𝒚𝒚 = 𝒄𝒄𝒄𝒄𝒄𝒄(𝒍𝒍𝒍𝒍𝒍𝒍𝒏𝒏)𝒔𝒔𝒔𝒔𝒔𝒔(𝒍𝒍𝒍𝒍𝒍𝒍𝒏𝒏+𝟏𝟏) − 𝒔𝒔𝒔𝒔𝒔𝒔(𝒍𝒍𝒍𝒍𝒍𝒍𝒏𝒏)𝒄𝒄𝒄𝒄𝒄𝒄(𝒍𝒍𝒍𝒍𝒍𝒍𝒏𝒏+𝟏𝟏)𝒄𝒄𝒄𝒄𝒄𝒄(∆𝒍𝒍) 

The angle and speed of the wind were determined similarly from their corresponding x- 

and y-directions, Uw and Vw, respectively: 

Equation 2.15 

𝟒𝟒𝟒𝟒𝟒𝟒 − 𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝟐𝟐(𝑽𝑽 ,𝑼𝑼 ) , 𝑼𝑼 < 𝟒𝟒 𝒂𝒂𝒏𝒏𝒘𝒘 𝑽𝑽 > 𝟒𝟒𝒒𝒒 � 𝒘𝒘 𝒘𝒘 𝒘𝒘
𝒘𝒘𝒘𝒘𝒏𝒏𝒘𝒘 = 𝒘𝒘  𝟗𝟗𝟒𝟒 −  𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝟐𝟐(𝑽𝑽𝒘𝒘,𝑼𝑼𝒘𝒘) , 𝒆𝒆𝒍𝒍𝒄𝒄𝒆𝒆

Equation 2.16 
𝑽𝑽𝒘𝒘𝒘𝒘𝒏𝒏𝒘𝒘 = �𝑼𝑼 𝟐𝟐

𝒘𝒘 + 𝑽𝑽 𝟐𝟐
𝒘𝒘  

Equation 2.17 

This was then combined with the driving direction to find the angle of wind relative to the 

direction of motion: 

𝝑𝝑 = 𝒒𝒒𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘 − 𝒒𝒒𝒅𝒅𝒅𝒅 

Twenty years (2000-2020) of wind speed information delineated by month for the state of 

Kansas (the authors’ home state) was captured from National Oceanic and Atmospheric 

Administration data (National Centers for Environmental Information, 2021). 

2.2 Rolling Resistance 

The rolling resistance force in Equation 2.1 can be expressed in a simplistic manner using 

a singular rolling resistance coefficient (𝜇𝜇𝑟𝑟) employing the overall mass of the vehicle (m) times 

the acceleration due to gravity (g): 

Equation 2.18 
𝑭𝑭𝐑𝐑 = 𝝁𝝁𝒓𝒓𝒎𝒎𝒎𝒎 
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A more complex expression that is a function of tire pressure (ptire) and vehicle velocity, 

also, is (Hausmann & Depcik, 2014): 

Equation 2.19 

𝑭𝑭𝐑𝐑 = �
𝒑𝒑𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕
𝒑𝒑𝒓𝒓𝒓𝒓𝒓𝒓

�
𝜶𝜶

�
𝒎𝒎𝒎𝒎
𝒁𝒁𝒓𝒓𝒓𝒓𝒓𝒓

�
𝜷𝜷

(𝒂𝒂𝒓𝒓𝒓𝒓 + 𝒃𝒃𝒓𝒓𝒓𝒓𝑽𝑽� + 𝒄𝒄𝒓𝒓𝒓𝒓𝑽𝑽�𝟐𝟐) 

Including reference parameters (pref = 1 kPa, Zref = 1 N). Since the model was initially 

calibrated to match EPA data (discussed in Section 2.7) utilizing chassis dynamometer information 

(Equation 2.2), this allowed for calibration of this rolling resistance function to determine the 

constants (arr, brr, and crr). For the parameters α and β, values by Grover were utilized for a 

P195/70R14 tire: -0.345 and 0.929, respectively (Grover, 1998). Ideally, these values should be 

found for each tire utilized by the EVs; however, this information was not available. Therefore, 

simulating different tire pressures and vehicle weights other than the EPA test values will incur 

some error. However, the respective trends will be informative and provide a better representation 

rather than the use of a singular rolling resistance coefficient. One oversight not considered with 

this model is that tire pressure will change based on ambient temperatures (e.g., 1.566-2.031 

psi/18 °F [0.108-0.140 bar/10º C ][Fechtner et al., 2015]); however, this could be added in the 

future. 

 
Figure 2.1: Comparison of Rolling Resistance Model Predictions and Experimental Data 

for Rain (Left) and Snow (Right) 
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To account for inclement weather conditions, rolling resistance coefficients (𝜇𝜇𝑟𝑟) as a 

function of water film thickness (i.e., rain) for a standard reference test tire (Ejsmont et al., 2015) 

and rolling resistance forces (FR) based on snow thickness (Kihlgren, 1977) were found as shown 

in Figure 2.1. Using the available weights and tire pressures provided in these references, the 

values of the constants for Equation 2.19 without rain or snow were first found using the MATLAB 

fmincon function while minimizing the difference between the calculated 𝜇𝜇𝑟𝑟 or FR based on the 

corresponding data: 

Rain: arr = 2.134E-02 lbf, brr = 4.653E-03 lbm s-1, and crr = -3.437E-05 lbm ft-1 

Snow: arr = -2.837E-02 lbf, brr = 1.009E-01 lbm s-1, and crr = -8.178E-04 lbm ft-1 

Subsequently, a revised rolling resistance force model was generated to account for the 

respective thickness of the rain or snow (𝑡𝑡𝑟𝑟𝑟𝑟), respectively: 

Equation 2.20 

𝑭𝑭𝐑𝐑 = �
𝒑𝒑𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕
𝒑𝒑𝒓𝒓𝒓𝒓𝒓𝒓

�
𝜶𝜶

�
𝒎𝒎𝒎𝒎
𝒁𝒁𝒓𝒓𝒓𝒓𝒓𝒓

�
𝜷𝜷

(𝒂𝒂𝒓𝒓𝒓𝒓 + 𝒃𝒃𝒓𝒓𝒓𝒓𝑽𝑽� + 𝒄𝒄𝒓𝒓𝒓𝒓𝑽𝑽�𝟐𝟐)(𝒂𝒂𝒓𝒓𝒓𝒓 + 𝒃𝒃𝒓𝒓𝒓𝒓𝒕𝒕𝒓𝒓𝒓𝒓 + 𝒄𝒄𝒓𝒓𝒓𝒓𝑽𝑽�𝒕𝒕𝒓𝒓𝒓𝒓) 

Given the respective scatter of the data, a linear fit was initially chosen as higher order fits 

caused the rolling resistance to decrease at the largest water film level, which is erroneous. Since 

the data also indicates a velocity dependency, the last term in the added model components 

includes its influence. This model was then calibrated using the MATLAB fmincon function to 

minimize the difference between the calculated values and experimental data with the following 

results: 

Rain: art = 1, brt = 1.382E+02 ft-1, crt = 4.349E-01 s·ft-2 

Snow: art = 1; brt = -1.246E-01 ft-1, crt = 1.004E-01 s·ft-2 

Overall, the results in Figure 2.1 demonstrate an acceptable fit (R2 between 0.744 and 

0.924). 

2.3 Gradation and Acceleration/Deceleration Forces 

Equation 2.21 

The gradation force in Equation 2.1 involves the current slope of the roadway (𝜃𝜃): 

𝑭𝑭𝑮𝑮 =  𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎 
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Determined using the elevation change over the distance travelled: 

Equation 2.22 

𝜽𝜽 = 𝐭𝐭𝐭𝐭𝐭𝐭−𝟏𝟏 �
𝑬𝑬𝒏𝒏+𝟏𝟏 − 𝑬𝑬𝒏𝒏

𝒅𝒅𝒏𝒏+𝟏𝟏 − 𝒅𝒅𝒏𝒏
� 

Considering highways are regulated to have a maximum gradient (GP) of 7% (American 

Association of State Highway and Transportation Officials, 2001), a conditional statement was 

implemented to limit the grade experienced along the route to a maximum of 7% resulting in a 

slope angle of about 4 degrees: 

Equation 2.23 
𝜽𝜽 = 𝐭𝐭𝐭𝐭𝐭𝐭−𝟏𝟏(𝑮𝑮𝑮𝑮/𝟏𝟏𝟏𝟏𝟏𝟏) 

The net vehicle force (i.e., acceleration or deceleration of the vehicle) in the travelled 

direction is expressed as: 

Equation 2.24 
𝑭𝑭𝒙𝒙 =  𝒎𝒎

𝒅𝒅𝒅𝒅
𝒅𝒅𝒅𝒅

 

Using a Euler Explicit differentiation, the velocity derivative can be simplified: 

Equation 2.25 

𝒅𝒅𝒅𝒅
𝒅𝒅𝒅𝒅

=
𝑽𝑽𝒏𝒏+𝟏𝟏 − 𝑽𝑽𝒏𝒏

∆𝒕𝒕
 

The time-step in Equation 2.25 is calculated using the change in distance divided by the 

average vehicle speed: 

Equation 2.26 
∆𝒕𝒕 =

𝒅𝒅𝒏𝒏+𝟏𝟏 − 𝒅𝒅𝒏𝒏

𝑽𝑽�
 

2.4 Torques, Engine Speed, and Power 

At each time-step, the tractive force was calculated using Equation 2.1 allowing for the 

determination of the resulting wheel (𝜏𝜏𝑤𝑤) and brake torques (𝜏𝜏𝑏𝑏), respectively: 

Equation 2.27 
𝝉𝝉𝒘𝒘 = 𝑭𝑭𝑻𝑻 ∙ 𝒓𝒓𝒅𝒅 
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Equation 2.28 

𝝉𝝉𝒃𝒃 =
𝝉𝝉𝒘𝒘

𝒊𝒊𝟎𝟎𝒊𝒊𝒈𝒈𝒉𝒉𝒕𝒕
 

Where 𝑟𝑟𝑑𝑑, 𝑖𝑖0, 𝑖𝑖𝑔𝑔, and ℎ𝑡𝑡 are the tire radius, the final drive gear ratio, transmission gear ratio, 

and driveline efficiency, respectively. The influence of driveline efficiency was incorporated 

through an auxiliary power draw (discussed in the next section); hence, for this expression it was 

given a value of one. 

Next, the motor speed (N) was calculated by using the average velocity: 

Equation 2.29 

𝑵𝑵 =
𝑽𝑽�𝒊𝒊𝟎𝟎𝒊𝒊𝒈𝒈
𝟐𝟐𝝅𝝅𝒓𝒓𝒅𝒅

 

In combination with the brake torque, this value was utilized to determine the brake power 

(𝑃𝑃𝑏𝑏) that was employed to evaluate motor power (𝑃𝑃𝑚𝑚) using the efficiency of the motor (ℎ𝑚𝑚). 

Equation 2.30 
𝑷𝑷𝒃𝒃 = 𝟐𝟐𝝅𝝅𝝉𝝉𝒃𝒃𝑵𝑵 

Equation 2.31 

𝑷𝑷𝒎𝒎 =
𝑷𝑷𝒃𝒃
𝒉𝒉𝒎𝒎

 

With a three-dimensional motor map implemented based on motor torque and speed. For 

simplicity, the map for regenerative braking was assumed to be the same as the motor map, 

although they will differ slightly. In addition, regenerative braking power (𝑃𝑃𝑟𝑟) was determined 

slightly differently (i.e., power used by the motor during acceleration should be more than the 

braking power), whereas the power recovered by the motor during braking/regeneration should be 

less than the braking power. 

Equation 2.32 
𝑷𝑷𝒓𝒓 = 𝒉𝒉𝒎𝒎𝑷𝑷𝒃𝒃 
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Figure 2.2: Motor Efficiency Maps for (Top Left) Permanent Magnet Synchronous Motor 
A, (Top Right) Permanent Magnet Synchronous Motor B, and (Bottom) Induction Motor 

 

Three motors maps were found to account for two different permanent magnet synchronous 

motors (A – [Momen et al., 2016] and B – [Burress, 2013]) and an induction motor (Staton & 

Goss, 2017) as provided in Figure 2.2. Unfortunately, the need to digitize these maps required 

estimating a few values near the origin and out of the maximum power area. In addition, if it is 

found maximum torque and maximum speed of a vehicle’s motor were greater than the 

corresponding map chosen, then the map was scaled by these respective parameters to ensure that 

it captures the entire operating range. As a result, there is some error in this estimation of motor 

(and regeneration) efficiency, and it would be preferred to use the exact motor map data. Another 

simulation approach could be to employ the model of Larsson (2014) that estimates motor 

efficiency as a function of torque and rotational speed and then calibrate the constants to available 
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map data. This would provide quicker simulation results and potentially handle data near zero 

torque and zero motor speed more effectively. 

Subsequently, the amperage draws (𝐼𝐼𝑝𝑝𝑎𝑎𝑐𝑐𝑝𝑝) from the battery pack was found using its 

voltage from a look-up table based on the current State of Charge (SOC) under different discharge 

currents (indicated in Section 2.6). 

Equation 3.33 

𝑰𝑰𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑 =
𝑷𝑷𝒎𝒎 + 𝑷𝑷𝒂𝒂𝒂𝒂𝒂𝒂
𝑽𝑽�𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑

 

Where the average voltage of the pack over the time-step was used in an iterative 

procedure, i.e., 𝑉𝑉𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑛𝑛  was known and a new value (𝑉𝑉𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑛𝑛+1 ) was found based on an updated SOCn+1. 

For this equation, the Paux parameter includes all auxiliary system draws as discussed in the next 

section. 

2.5 Auxiliary Power 

With respect to driveline efficiency, there are losses resulting from the conversion of 

battery energy into useful torque. Other systems, such as the inverter, lights, windows, etc., also 

consume energy during operation and must be considered when estimating the range of an EV. 

Evtimov et al. (2017) characterized these specific energy consumptions by polynomials up to the 

sixth order as a function of vehicle speed. In the scenario when heating or air conditioning is not 

required, this power draw was estimated using a second-order polynomial while additionally 

including a temperature factor: 

Equation 2.34 
𝑷𝑷𝒂𝒂𝒂𝒂𝒂𝒂,𝑯𝑯𝑯𝑯𝑯𝑯𝑯𝑯𝒐𝒐𝒐𝒐𝒐𝒐 = (𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂 + 𝒃𝒃𝒂𝒂𝒂𝒂𝒂𝒂𝑽𝑽� + 𝒄𝒄𝒂𝒂𝒂𝒂𝒂𝒂𝑽𝑽�𝟐𝟐) �𝟏𝟏 + �

𝑻𝑻𝒂𝒂𝒂𝒂𝒂𝒂 − 𝟐𝟐𝟐𝟐𝟐𝟐.𝟏𝟏𝟏𝟏𝑲𝑲
𝟐𝟐𝟐𝟐𝟐𝟐.𝟏𝟏𝟏𝟏𝑲𝑲

��
𝜶𝜶𝒂𝒂𝒂𝒂𝒂𝒂

 

The respectively simplistic temperature factor expression was based on findings from the 

American Automobile Association (AAA) that found small reductions in driving range of 

commercial EVs in hot and cold ambient conditions when the heating, ventilation, or air 

conditioning (HVAC) system is not engaged (American Automobile Association, 2019). Here, 

three parameters (𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎, 𝑏𝑏𝑎𝑎𝑎𝑎𝑎𝑎, and 𝑐𝑐𝑎𝑎𝑎𝑎𝑎𝑎) are used as calibration for the model to match the SAE 

J1634 test for the EPA City and Highway range values (discussed in Section 2.7) at 77 °F (25 °C) 



13 

with the HVAC system off (U.S. Department of Energy & U.S. Environmental Protection Agency, 

2021). The temperature factor (𝛼𝛼𝑎𝑎𝑎𝑎𝑎𝑎) considers the relative losses found during testing by AAA at 

20 °F and 95 °F from their standard data state of 75 °F. 

When the HVAC system is engaged, Yuksel and Michalek (2015) generated a polynomial 

fit for this energy consumption per unit distance (Eaux) in (kWh·mi-1) with the ambient temperature 

in (°F): 

Equation 2.35 
𝑬𝑬𝒂𝒂𝒂𝒂𝒙𝒙 = 𝒂𝒂𝒀𝒀𝒀𝒀 + 𝒃𝒃𝒀𝒀𝒀𝒀𝑻𝑻𝒂𝒂𝒎𝒎𝒃𝒃 + 𝒄𝒄𝒀𝒀𝒀𝒀𝑻𝑻𝒂𝒂𝒎𝒎𝒃𝒃𝟐𝟐 + 𝒘𝒘𝒀𝒀𝒀𝒀𝑻𝑻𝒂𝒂𝒎𝒎𝒃𝒃𝟑𝟑 + 𝒆𝒆𝒀𝒀𝒀𝒀𝑻𝑻𝒂𝒂𝒎𝒎𝒃𝒃𝟒𝟒 + 𝒇𝒇𝒀𝒀𝒀𝒀𝑻𝑻𝒂𝒂𝒎𝒎𝒃𝒃𝟒𝟒  

This model includes the effects of cabin conditioning and battery efficiency as a function 

of ambient conditions while isolating the temperature effect from location-specific influences (i.e., 

driving conditions). Similar to a prior effort (Depcik et al., 2019), Eaux was multiplied by the 

velocity to obtain the power draw from the battery pack due to the HVAC system operating. 

However, analogous to Equation 2.34, a second order polynomial was used for the velocity 

component: 

Equation 2.36 
𝑷𝑷𝒂𝒂𝒂𝒂𝒂𝒂,𝑯𝑯𝑯𝑯𝑯𝑯𝑯𝑯𝒐𝒐𝒐𝒐 = (𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂 + 𝒃𝒃𝒂𝒂𝒂𝒂𝒂𝒂𝑽𝑽� + 𝒄𝒄𝒂𝒂𝒂𝒂𝒂𝒂𝑽𝑽�𝟐𝟐)𝑬𝑬𝒂𝒂𝒂𝒂𝒂𝒂 

All constants in Equation 2.35 and 2.36 were calibrated (again using the MATLAB fmincon 

function to minimize differences between experimental data and the model) to account for the 

losses found during the AAA tests at 20 °F and 95 °F when the HVAC system was engaged (again 

away from their standard state of 75 °F). Note that temperature in Equation 2.35 was left in degrees 

Fahrenheit to be consistent with Yuksel and Michalek’s (2015) formulation and the use of kelvin 

provided less model fidelity (i.e., using kelvin with a sixth-order temperature term causes the value 

of Eaux to change dramatically over a 1 kelvin temperature difference). 

2.6 Batteries 

To calculate capacity losses (or gains) of the battery pack (∆𝐴𝐴ℎ) as power is required (or 

regenerated), the Hausmann and Depcik model was implemented where the constants γ, χ, and δ 

describe the capacity offset of the battery (Hausmann & Depcik, 2013; O’Malley et al., 2018): 
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Equation 2.37 

∆𝑨𝑨𝑨𝑨 = 𝜸𝜸�
𝑰𝑰𝒕𝒕
𝑰𝑰𝒓𝒓𝒓𝒓𝒓𝒓

�
χ

�
𝑻𝑻𝒓𝒓𝒓𝒓𝒓𝒓
𝑻𝑻𝒕𝒕

�
𝜹𝜹

∆𝒕𝒕 

Both the reference temperature (𝑇𝑇𝑟𝑟𝑎𝑎𝑓𝑓) and reference amperage draw (𝐼𝐼𝑟𝑟𝑎𝑎𝑓𝑓) are 298 K and 

1 A, respectively. Based on the specific chemistry of the battery for each EV, representative 

singular battery voltage versus depth of discharge data were found (Figure 2.3 through Figure 2.6) 

and the simulation assumed that all batteries act similarly. Therefore, the pack amperage draw was 

reduced by the number of batteries in parallel (Npar) to find the amperage required by a singular 

battery (It): 

Equation 2.38 

𝑰𝑰𝒕𝒕 =
𝑰𝑰𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑
𝑵𝑵𝒑𝒑𝒑𝒑𝒑𝒑

 

Unfortunately, for a few chemistries, temperature specific data were not found; hence, the 

δ parameter was set to zero. Overall, data for LiNi1/3Co1/3Mn1/3O2 (NCM333) (Samsung, 2015), 

LiNi0.5Co0.2Mn0.3O2 (NCM523) (Kwon et al., 2018), LiNi0.6Co0.2Mn0.2O2 (NCM622) (Kwon et al., 

2018), and two nickel cobalt aluminum oxide (NCA1 and NCA2) (Panasonic, 2012; ZeroAir 

Reviews, 2018) batteries were found. For simulation purposes, the temperature of the battery (𝑇𝑇𝑡𝑡) 

was set to the reference temperature since it is assumed that the battery management system 

endeavors to maintain the chemistry at its ideal level. Calibration of the capacity offset parameters 

is described in O’Malley et al. (2018). 
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Figure 2.3: Experimental Data and Model Results of a Representative NCM622 Battery 

 
Figure 2.4: Experimental Data and Model Results of a Representative NCM523 Battery 
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Figure 2.5: Experimental Data and Model Results of Representative NCA Batteries (NCA1 

– Left, NCA2 – Right) 

 
Figure 2.6: Experimental Data and Model Results of a Representative NCM333 Battery 

 

Starting with an initial battery pack capacity (Ah0), it loses capacity according to the 

following equation, with 𝐴𝐴ℎ𝑤𝑤 the capacity of the current time step and 𝐴𝐴ℎ𝑤𝑤+1 the capacity of the 

next step: 

Equation 2.39 
𝑨𝑨𝑨𝑨𝒏𝒏+𝟏𝟏 = 𝑨𝑨𝑨𝑨𝒏𝒏 − ∆𝑨𝑨𝑨𝑨 

Then, the SOC of the batteries can be found from the initial capacity: 

Equation 2.40 
𝑺𝑺𝑺𝑺𝑺𝑺𝒏𝒏+𝟏𝟏 =

𝑨𝑨𝑨𝑨𝒏𝒏+𝟏𝟏

𝑨𝑨𝑨𝑨𝟎𝟎
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Overall, by using the time step over the simulation and the known power draws, the energy 

required by the battery pack during this time step can be calculated and expressed in watt-hours 

(Wh): 

Equation 2.41 
∆𝑾𝑾𝑾𝑾 = ∆𝒕𝒕(𝑷𝑷𝒎𝒎 + 𝑷𝑷𝒂𝒂𝒂𝒂𝒂𝒂) 

It has been shown that as EVs age, their range also decreases (Saxena et al., 2015). To 

account for this facet, polynomial curve-fits were incorporated that estimate the percentage of 

capacity remaining (cm) in the battery pack after several cycles (cy) (R2 ~ 0.996) at 77 °F (25 °C): 

Equation 2.42 

NCM622: 𝒄𝒄𝒎𝒎 = 𝟏𝟏𝟏𝟏𝟏𝟏 − 𝟕𝟕.𝟓𝟓𝟓𝟓𝟓𝟓 × 𝟏𝟏𝟏𝟏−𝟑𝟑𝒄𝒄𝒚𝒚 − 𝟏𝟏.𝟕𝟕𝟕𝟕𝟕𝟕 × 𝟏𝟏𝟏𝟏−𝟓𝟓𝒄𝒄𝒚𝒚𝟐𝟐 +

𝟗𝟗.𝟎𝟎𝟎𝟎𝟎𝟎 × 𝟏𝟏𝟏𝟏−𝟗𝟗𝒄𝒄𝒚𝒚𝟑𝟑 − 𝟏𝟏.𝟓𝟓𝟓𝟓𝟓𝟓 × 𝟏𝟏𝟏𝟏−𝟏𝟏𝟏𝟏𝒄𝒄𝒚𝒚𝟒𝟒 

Equation 2.43 

NCM523: 𝒄𝒄𝒎𝒎 = 𝟏𝟏𝟏𝟏𝟏𝟏 + 𝟕𝟕.𝟑𝟑𝟑𝟑𝟑𝟑 × 𝟏𝟏𝟏𝟏−𝟑𝟑𝒄𝒄𝒚𝒚 − 𝟏𝟏.𝟕𝟕𝟕𝟕𝟕𝟕 × 𝟏𝟏𝟏𝟏−𝟓𝟓𝒄𝒄𝒚𝒚𝟐𝟐 +

𝟗𝟗.𝟑𝟑𝟑𝟑𝟑𝟑 × 𝟏𝟏𝟏𝟏−𝟗𝟗𝒄𝒄𝒚𝒚𝟑𝟑 − 𝟏𝟏.𝟓𝟓𝟓𝟓𝟓𝟓 × 𝟏𝟏𝟏𝟏−𝟏𝟏𝟏𝟏𝒄𝒄𝒚𝒚𝟒𝟒 

Equation 2.44 

NCM622: 𝒄𝒄𝒎𝒎 = 𝟏𝟏𝟏𝟏𝟏𝟏 − 𝟕𝟕.𝟓𝟓𝟓𝟓𝟓𝟓 × 𝟏𝟏𝟏𝟏−𝟑𝟑𝒄𝒄𝒚𝒚 − 𝟏𝟏.𝟕𝟕𝟕𝟕𝟕𝟕 × 𝟏𝟏𝟏𝟏−𝟓𝟓𝒄𝒄𝒚𝒚𝟐𝟐 +

𝟗𝟗.𝟎𝟎𝟎𝟎𝟎𝟎 × 𝟏𝟏𝟏𝟏−𝟗𝟗𝒄𝒄𝒚𝒚𝟑𝟑 − 𝟏𝟏.𝟓𝟓𝟓𝟓𝟓𝟓 × 𝟏𝟏𝟏𝟏−𝟏𝟏𝟏𝟏𝒄𝒄𝒚𝒚𝟒𝟒 

Equation 2.45 

NCM333: 𝒄𝒄𝒎𝒎 = 𝟏𝟏𝟏𝟏𝟏𝟏 − 𝟑𝟑.𝟐𝟐𝟐𝟐𝟐𝟐 × 𝟏𝟏𝟏𝟏−𝟑𝟑𝒄𝒄𝒚𝒚 − 𝟑𝟑.𝟐𝟐𝟐𝟐𝟐𝟐 × 𝟏𝟏𝟏𝟏−𝟔𝟔𝒄𝒄𝒚𝒚𝟐𝟐 +

𝟏𝟏.𝟖𝟖𝟖𝟖𝟖𝟖 × 𝟏𝟏𝟏𝟏−𝟗𝟗𝒄𝒄𝒚𝒚𝟑𝟑 − 𝟑𝟑.𝟑𝟑𝟑𝟑𝟑𝟑 × 𝟏𝟏𝟏𝟏−𝟏𝟏𝟏𝟏𝒄𝒄𝒚𝒚𝟒𝟒 

This percentage capacity remaining was then multiplied by the initial capacity (Ah0) to 

determine the pack capacity as a function of an initial starting cycle. The coefficients were 

determined by matching the polynomials to experimental data in Figure 2.7 (NCM622 and NCM523 

[Kwon et al., 2018], NCA [Panasonic, 2012], and NCM333 [Samsung, 2015]). Note that the NCA 

data was linearly extrapolated from the last two data points until 3000 cycles and the model fit 

these data for completeness. 
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Figure 2.7: Loss in Capacity of Representative Batteries Based on Cycle Life 

2.7 SAE J1634 Calculations and Considerations 

The initial calibration of the model was accomplished according to the EPA data 

determined from the SAE J1634 standard (SAE J1634, 2017). In this standard, the equations 

needed to find vehicle city and highway ranges are provided as part of a Multi-Cycle Test (MCT) 

procedure. The general form for the range of a given cycle type �𝑅𝑅𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑎𝑎� is as follows: 

Equation 2.46 

𝑹𝑹𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄 =  
𝑼𝑼𝑼𝑼𝑼𝑼

𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄
 

Where the total usable battery energy from the entire test (𝑈𝑈𝑈𝑈𝐸𝐸) in W-h (i.e., sum of 

Equation 2.41 over the entire test) is divided by the total energy consumption per unit distance 

(𝐸𝐸𝐶𝐶𝑑𝑑𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑎𝑎) of a given cycle type (i.e., highway or city: W⋅h⋅m-1). To find 𝐸𝐸𝐶𝐶𝑑𝑑𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑎𝑎, the phase 

scaling factor (𝐾𝐾𝑝𝑝ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑖𝑖) is used in conjunction with the energy consumption per unit distance of a 

given phase (𝐸𝐸𝐶𝐶𝑑𝑑𝑐𝑐𝑝𝑝ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑖𝑖): 

Equation 2.47 
𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄 =  ��𝑲𝑲𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒊𝒊 ∙ 𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒊𝒊� 

Where 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑝𝑝ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑖𝑖 is found using the DC energy consumption (𝐸𝐸𝐸𝐸𝐸𝐸𝑝𝑝ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑖𝑖) and distance 

traveled of a given phase (𝐷𝐷𝑝𝑝ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑖𝑖): 
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Equation 2.48 

𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒊𝒊 =  
𝑬𝑬𝑬𝑬𝑬𝑬𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒊𝒊
𝑫𝑫𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒊𝒊

 

Additionally, 𝐾𝐾𝑝𝑝ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑖𝑖 is found for each phase of the test using the total number of phases 

of certain cycle (𝑛𝑛𝑈𝑈𝐷𝐷𝐷𝐷𝑈𝑈 = 4,𝑛𝑛𝐻𝐻𝐻𝐻𝐻𝐻𝐸𝐸𝑇𝑇 = 2): 

Equation 2.49 

𝑲𝑲𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒊𝒊 =  
𝟏𝟏

𝒏𝒏𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄
 

𝐾𝐾𝑝𝑝ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑖𝑖 is equal to 𝐾𝐾𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑎𝑎𝑖𝑖 for both phases of the HWFET (highway) cycle, but the UDDS 

(city) cycle requires an additional consideration. As a result of cold start regenerative braking 

limitations during the first phase of the UDDS cycle that occurs during the MCT test, there is 

overall increased energy consumption for the UDDS cycle. To counter this effect, an equivalent 

phase scaling factor (𝐾𝐾𝑈𝑈𝐷𝐷𝐷𝐷𝑈𝑈𝑖𝑖𝑖𝑖) is used for each UDDS phase: 

Equation 2.50 
𝑲𝑲𝑼𝑼𝑼𝑼𝑼𝑼𝑼𝑼𝟏𝟏𝒆𝒆 =  

𝑬𝑬𝑬𝑬𝑬𝑬𝑼𝑼𝑼𝑼𝑼𝑼𝑼𝑼𝟏𝟏
𝑼𝑼𝑼𝑼𝑼𝑼

 

Equation 2.51 
𝑲𝑲𝑼𝑼𝑼𝑼𝑼𝑼𝑼𝑼𝟐𝟐𝒆𝒆 =  𝑲𝑲𝑼𝑼𝑼𝑼𝑼𝑼𝑼𝑼𝟑𝟑𝒆𝒆 =  𝑲𝑲𝑼𝑼𝑼𝑼𝑼𝑼𝑼𝑼𝟒𝟒𝒆𝒆 =  

𝟏𝟏 −  𝑲𝑲𝑼𝑼𝑼𝑼𝑼𝑼𝑼𝑼𝟏𝟏𝒆𝒆
𝟑𝟑

 

Two further considerations are needed regarding the SAE J1634 standard: 

1.  Vehicle must be aged at least 1000 miles, and 

2.  The Constant Speed Cycle (CSC) at the end of the MCT must be 20% 

or less of the total driving distance. 

Regarding aging, it states that battery aging may be performed either with the vehicle 

(Durability Driving Schedules, 2011) or by using an equivalent bench test procedure (Idaho 

National Engineering Laboratory, 1996). Since it was not readily apparent how to translate the 

bench test procedure to vehicle miles, the methodology to age the vehicle using the durability 

driving schedule (UDDS) was employed (Durability Driving Schedules, 2011). In essence, the 

UDDS cycle was simulated for 1000 miles to determine the respective number of cycles (𝑐𝑐𝑦𝑦) the 

battery pack underwent. Then, the capacity remaining polynomials in Section 4.6 were used to 

determine the respective value of 𝑐𝑐𝑚𝑚 to be applied to the pack prior to simulating the SAE J1634 

standard. 
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To properly model this driving cycle, values for maximum acceleration, normal 

acceleration, light acceleration, normal deceleration, and light deceleration had to be found from 

the literature. Taking the average value from various sources, 10.4 ft/s2 and 3.31 ft/s2 were obtained 

for maximum acceleration and normal acceleration, respectively (Proctor et al., 1995; Kleeman, 

1998; Bokare & Maurya, 2017). As for light acceleration, a rate of 1.66 ft/s2 corresponds to half 

of the normal acceleration value and falls within the low to medium range of acceleration seen in 

the UDDS drive cycle. For normal deceleration, an average of 8.30 ft/s2 was found when stopping 

from a maximum speed ranging from 36.5 to 82 ft/s (Bennett & Dunn, 1995; Akçelik & Besley, 

2001; Wang et al., 2005; Maurya & Bokare, 2012; Bokare & Maurya, 2017). Average deceleration 

from maximum speeds ranging from 82.9 to 91.1 ft/s was significantly less in magnitude, at an 

average of 3.953 ft/s2 (Maurya & Bokare, 2012), and thus, was used for modeling light 

deceleration. 

 
Figure 2.8: Created MCT cycle for the 2019 Chevy Bolt 

 

The red circles on the graphs in Figure 2.8 correspond to the beginning and ending of the 

different components of the cycle (UDDS, HWFET, and CSC). 
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As a result of these considerations, the following methodology was taken when calibrating 

the model to EPA data: 

1. Guessed a certain number of cycles based on the EPA stated range (i.e., 

cycles = 1000 mi/EPA range and rounded up) to find the corresponding 

capacity loss from Section 2.6. 

2. Simulated the SAE J1634 test procedure and found the model 

parameters (e.g., auxiliary power draw and maximum SOC) that fit the 

EPA City and Highway range and miles per gallon equivalent (MPGe) 

while ensuring the 20% or less requirement for the CSC at the end 

(CSCend) was met (note: additional code was generated to dynamically 

create the MCT profile as indicated in Figure 2.8). 

3. Calibrated the rolling resistance coefficients (arr, brr, and crr in Equation 

2.19) to the EPA combined drag and rolling resistance model in 

Equation 2.2 from 0 to 100 miles per hour while calculating the 

individual drag force via Equation 2.4. Like other calibration efforts, the 

MATLAB fmincon optimization routine was utilized to minimize the 

difference between the two models. 

4. Ran with the calibrated rolling resistance and drag information through 

the durability driving cycle routine over 1000 simulated miles to see if 

it altered the number of cycles from (a). 

5. If it did change, (b) was redone using the new number of cycles and the 

procedure repeated. 

At this point, the model was fully calibrated to the SAE J1634 test procedure. 
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Chapter 3: Results and Discussion 

In Table A.1, all EV specifications and model parameters that were found (or guessed) are 

provided. In the following sections, the results of the model are described according to the 

influence of different parameters that affect their range. 

3.1 SAE J1634 Results Including Vehicle Mass and Tire Pressure 

Since the authors are not privy to the exact specifications of each vehicle and drivetrain 

(e.g., battery data and motor efficiency maps), while endeavoring to match the EPA stated ranges, 

it was decided that the maximum state of charge (SOC) of the battery pack be a calibration 

parameter. Investigating the representative batteries in Figure 2.3 through Figure 2.6, it was 

assumed that most EVs would not want to operate at a greater than 90% depth of discharge (10% 

SOC) since the voltage falls dramatically and the battery’s chemistry can be damaged. For similar 

reasons, operating at greater than 80% SOC might not be preferred, with Kostopoulos et al. (2020) 

finding that most researchers suggest a 20-80% SOC range for reduced capacity degradation while 

maintaining a good cyclical performance. Generally, this assumption worked well with five of the 

vehicles demonstrating an SOC range from 0.1 to ~0.85. For the VW e-Golf, the SOC range had to 

be expanded to nearly the maximum to match EPA data. While this outcome is likely not realistic, 

concessions must be made when not all information is readily available. Overall, on average the 

model deviates from the EPA highway and city range by 0.45 and 0.57 miles, respectively, for the 

six vehicles simulated in Table A.1. 
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Figure 3.1: (Left) Combined Range and (Right) Percentage Change in Range for a Chevy 

Bolt Based on the Added Vehicle Mass and Tire Pressure 

 

Figure 3.1 illustrates the influence of increased vehicle mass and tire pressure during a 

representative EPA test of the Chevy Bolt. As expected, adding vehicle mass reduces the range of 

the vehicle; albeit not dramatically, with around a 1-2% loss in range after doubling the added 

vehicle mass (300 lbs added is required in the SAE J1634 test procedure). Similarly, reducing the 

tire pressure finds a small corresponding loss in range of around 1% when the tire pressure is 

decreased by 2 psi. As stated before, the EPA test procedure is accomplished using a chassis 

dynamometer and does not include the influence of wind or road grade. In addition, it is 

accomplished without employing the HVAC system or even operating at most highway speed 

limits (i.e., its maximum speed is 65 mph as indicated in Figure 2.8); thus, it does not generally 

stress the battery pack. The respectively small losses according to added vehicle mass and tire 

pressure indicated in Figure 3.1 are likely under predicting what would be experienced in a real-

world scenario. 

3.2 Road Grade, Wind, and Vehicle Speed 

As a test of real-world conditions, the Nissan Leaf model was simulated driving from 

Kansas City, Missouri (730.87 ft elevation) to the Colorado border (3847.77 ft elevation) along I-

70 West at EPA test ambient conditions. Since the EPA test is performed at a maximum speed of 

65 mph, immediately upon simulation of true highway speeds (note: GPS location data was 
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correlated to the posted speed limit) a Nissan Leaf loses 36.2% of its range without considering 

road grade and wind conditions as indicated in Figure 3.2. Subsequently, since traveling to the 

Colorado border has a respectively uphill grade, the vehicle now loses 37.2% of its EPA stated 

range when considering road elevation. In addition, in most months traveling west on I-70 

encounters a wind force counter to vehicle motion; thus, adding in the negative impact of wind 

from June 2020 finds a 40.1% total range decrease. Finally, since a significant majority of drivers 

often drive faster than the posted speed limit (Mannering, 2007; De Leonardis et al., 2018; AAA 

Foundation for Traffic Safety, 2020), increasing the maximum speed of the vehicle to 80 mph (in 

the posted 75 mph speed limit zones), while factoring in wind and road grade demonstrates an 

overall 43.2% loss of EPA stated range. 

 
Figure 3.2: Illustration of Road Grade, Wind, and Vehicle Speed Influences on Range of 

Nissan Leaf at the EPA Tested Ambient Conditions 

 

3.3 Ambient Temperature Conditions 

To account for just the effect of different ambient temperatures, as discussed in Section 2.5, 

the 𝛼𝛼𝑎𝑎𝑎𝑎𝑎𝑎 parameter of Equation 2.34 was calibrated to the AAA data that provided reductions in 

driving range with the HVAC system off. Of note, AAA performed their tests according to the SAE 

J1634 methodology while including an additional driving cycle. This effort ignored the influence 

of this added driving cycle and simply utilized the respective losses in city and highway mileage 
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as a function of the two temperatures tested (20 °F and 95 °F) from AAA’s base temperature data 

(75 °F). This was done for all vehicles where AAA data existed, and the other vehicles used an 

average value of 𝛼𝛼𝑎𝑎𝑎𝑎𝑎𝑎. Overall, the model deviated from the experimental data by 1.90/3.53 and 

4.78/3.03 miles for the city and highway ranges at 20 °F and 95 °F, respectively. Obviously, the 

losses due to ambient temperature conditions are more complex than what a single parameter can 

estimate; however, without more information about the vehicles, this simplistic model appears to 

provide a reasonable result. 

Continuing the examination of a Nissan Leaf from the prior section, the respective range 

of this vehicle over the I-70 highway heading West was explored at the posted speed limits based 

on the ambient temperature. In Figure 3.3, the range of the vehicle is indicated before recharging 

is required when the HVAC system is not engaged; thus, each “leg” of the journey is provided 

based on the month of travel. Interestingly, a wide variance is seen as the wind direction changes 

from helping (December to February) to hurting (March to November). Overall, it would take five 

recharging stops to reach the Colorado border and possibly six when the wind direction is 

negatively influencing drag on the vehicle. In comparison, the EPA stated highway range predicts 

only three recharging events would be needed; thus, up to two times the amount of charging events 

might be encountered by the driver. 

To account for the influence of the HVAC system engaged, the AAA data including the 

added effect of HVAC was utilized to determine the power draw parameters of Equations 2.35 and 

2.36. Similarly, model calibration using the MATLAB fmincon function utilized the respective 

losses in city and highway mileage as a function of the two temperatures tested (20 °F and 95 °F) 

from their base temperature data. On average, at 20 °F the model deviates by 8.68 and 7.35 miles 

for the city and highway ranges, respectively; whereas, at 95 °F the model deviates by 2.83 and 

2.90 miles, respectively, for the city and highway predictions. Ideally, more data points beyond 

two temperatures should be utilized to help calibrate the model (or fabricate a better model). 

However, the present model should still generate a respectively more realistic outcome under real 

world conditions than the SAE J1634 test procedure. 
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Figure 3.3: Traveling from Kansas City, MO to the Colorado Border on I-70 West with the 

Respective Range Indicated Before Charging is Necessary. HVAC System is Not 
Engaged 

 
Figure 3.4: Traveling from the Colorado Border to Kansas City, MO on I-70 East with the 

(Left) HVAC System Off and (Right) HVAC System On 

 

Figure 3.4 demonstrates the influence of engaging the HVAC system of the same vehicle 

(Nissan Leaf), but now driving from the Colorado border to Kansas City, MO, on I-70 East. 

Interestingly, using the January 2020 data finds that the vehicle now needs seven recharging events 

when the HVAC system is engaged. For this month, the respectively cold weather increases the 

requirements of the heating system with the greater density of air and negative impact of wind now 

increasing vehicle drag. On average for each leg that utilized the full SOC of the battery pack, 
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turning on the HVAC system lost around an additional 4.4 miles of range over the entire year. 

Compared to the EPA stated range of 132.4 miles, complete legs heading East on I-70 with its 

beneficial road grade had an average range of 75.1 miles (43.3% less) over the course of the year. 

 
Figure 3.5: Range of the Different Modeled Vehicles Based on Ambient Temperature with 

the HVAC System Off (Solid Symbols) and HVAC System On (Open Symbols) Over the 
SAE J1634 Test Procedure 

 

Figure 3.5 provides the modeled range of the vehicles for the SAE J1634 test procedure 

simulated as a function of ambient temperature and engagement of the HVAC system. Given the 

sparseness of data used for calibration, caution should be employed when using these models; 

however, the overall trend of range with ambient temperature follows the respective trend 

predicted by EV data (Argue, 2020). The Tesla Model 3 and Jaguar I-Pace HVAC on models were 

generated by scaling the respective average Paux in Equation 2.36 using the vehicle cabin sizes 

(Vcabin) between the corresponding resistance heating (Chevy Bolt and Tesla Model S) and heat 

pump (Nissan Leaf and VW e-Golf) vehicles: 
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Equation 3.1 

𝑷𝑷𝒂𝒂𝒂𝒂𝒂𝒂,𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴 𝟑𝟑 = 𝑭𝑭 · 𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂�
𝑷𝑷𝒂𝒂𝒂𝒂𝒂𝒂,𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩

𝑽𝑽𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄,𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩
,
𝑷𝑷𝒂𝒂𝒂𝒂𝒂𝒂,𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴 𝑺𝑺

𝑽𝑽𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄,𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴 𝑺𝑺
�𝑽𝑽𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪,𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴 𝟑𝟑 

While additionally determining a factor (F) that ensures the HVAC on model predicts at 

least 5% lower city and highway range than the corresponding HVAC off model for that vehicle 

at each temperature. The values in Table A.1 are the resulting parameters from these estimations. 

As shown, the vehicles that employ a heat pump lose less range as a function of ambient 

temperature than the vehicles using resistance heaters. This is to be expected given the respective 

inefficiency of resistance heaters with heat pumps for EVs showing Coefficients of Performance 

around two (Bellocchi et al., 2018). Thus, more companies are investigating the potential of heat 

pumps while factoring in the additional cost required for this technology (Christen et al., 2017). 

Based on the Nissan Leaf and VW e-Golf losses, the use of scaling via Equation 3.1 first appears 

to overpredict the range loss for the Jaguar I-Pace. However, given the respective lower EPA range 

of these vehicles in comparison to the I-Pace, when normalized the percentage loss is relatively 

consistent: at 20 ºF. The Leaf and e-Golf lose 30.4% and 38.5% of their range, whereas the I-Pace 

is predicted to lose 38.8% of its range. Interestingly, Christen et al. (2017) found that Battery 

Electric Vehicles lose between about 30-50% of their range at 20 ºF and around 20% of their range 

at 95 ºF. The model predictions here indicate losses (city or highway) from 24.9-57.8% at 20 ºF to 

8.1-37.5% at 95 ºF; thus, it appears the models generated here provide reasonable values. 

3.4 Vehicle Age 

As EVs age and the number of battery cycles undergone increases, Figure 2.7 demonstrates 

that the overall capacity of the battery pack will decrease. This could exacerbate the range anxiety 

of the consumer and possibly lead to the consumer returning to a petroleum-based vehicle. 

Interestingly, the accuracy of the predicted range of the vehicle was shown to account for around 

20% of the satisfaction of an EV owner (McIntosh, 2021). Thus, it is important to understand how 

the range of an EV will change based on the driving location and the vehicle mileage. 
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Figure 3.6: (Left) Range of Jaguar I-Pace on I-35 N Starting from the Oklahoma Border as 

a Function of the Time of Year and Number of Miles on the Odometer with the HVAC 
System Turned On. (Right) The Respective Stopping Points of the First Leg as the 

Vehicle Ages Using January 2020 as the Month 

 

The left image in Figure 3.6 shows the range of the Jaguar I-Pace driving North on I-35 at 

different times of the year 2020 as the vehicle ages. The age of the vehicle was estimated by taking 

odometer mileage and dividing by the EPA stated combined range to determine the cycle to use 

with the models developed for Figure 2.7. This is likely an underestimation of the number of cycles 

but should provide sufficient insight. Again, each month shows a different range of the EV with 

the respective temperature and wind direction playing a role. Since the Jaguar is simulated using 

the NCM622 battery that has a respectively linear decrease in capacity with cycle usage, the range 

drops generally linearly with odometer mileage (shown here on a logarithmic x-axis). At around 

90,000 miles, the vehicle has lost 5% of its range at that month and subsequent driving continues 

the loss up to around 15% at 200,000 miles. At 100,000 miles, the Jaguar averages 124.4 miles of 

range over the year, a respective 43.7% decrease over its EPA estimated 220.8 highway mile range, 

but only a 5.7% loss in range over its predicted range at 1000 miles. 

The right image in Figure 3.6 demonstrates where the consumer would need to stop during 

the month of January as a function of vehicle age. As the odometer mileage increases, stops closer 

to Wichita, KS, would be needed. This could be problematic for the consumer if they are used to 

a particular stop location and do not pay attention to their EV losing range as it ages. It is also 

unknown whether each EV has its own factor in range projection that considers odometer mileage. 
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If not, it is possible the satisfaction of the consumer would subsequently decrease as the vehicle 

ages. 

 
Figure 3.7: (Left) Range of Tesla Model S on I-35 S Starting from Kansas City, MO as a 

Function of the Time of Year and Number of Miles on the Odometer with the HVAC 
System Turned On. (Right) The Respective Stopping Points of the First Leg as the 

Vehicle Ages Using November 2020 as the Month 

 

In comparison, the left image of Figure 3.7 illustrates that it only takes the Tesla Model S 

around 15,000 miles to lose 5% of its range and at 100,000 miles it has lost on average 28.1% of 

its initial range for that month. This result is due to the chosen NCA battery aging curve in 

Figure 2.7 having a more drastic loss in battery capacity with the number of battery cycles. This is 

assumed to be a function of the respective nickel level of the perceived battery chemistries. Adding 

nickel improves the overall capacity of the battery but leads to a proportional decrease in its 

performance during cycling (Park et al., 2019). Note that NCA batteries generally are of the 

LiNi0.8Co0.15Al0.05O2 chemistry and this also explains why the NCM523 battery performs better 

cyclically than the NCM622 battery in Figure 2.7. 

Now, at 100,000 miles the average range over the year is 124.1 miles which is a respective 

53.1% decrease over its EPA estimated 264.6 highway mile range. Furthermore, the right image 

of Figure 3.7 demonstrates a significant difference in stopping locations based on odometer 

mileage. In general, the layered ternary cathode materials of NCM and NCA batteries have a 

significantly high storage capacity and voltage potential making them suitable for long-range EVs; 
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however, they can have a poor rate capacity (Liu et al., 2020). Thus, as shown here, it is important 

to understand the impact of battery aging as it can lead to significant losses in EV range potentially 

exacerbating the range anxiety of the driver. 

3.5 Rain and Snow 

As indicated in the introduction, both rain and snow can lead to a respective increase in 

rolling resistance subsequently impacting the range of an EV. In addition, the prior sections 

investigated high-speed corridors through the state of Kansas. Given the squared factor of velocity 

impacting drag in Equation 2.4, this will result in a greater loss of range in comparison to a lower 

speed route. Thus, the left image in Figure 3.8 demonstrates the impact of rain on the range of a 

Tesla Model 3 during a respectively lower speed route (US-54 East). As indicated, the range of 

the vehicle falls generally linearly with the amount of rain on the road during July of 2020. 

Reviewing the stopping locations in the right image of Figure 3.8 finds, like age, that sooner stops 

are needed and at the highest rain level on the road (0.10 in.), a third stop would be required before 

reaching the Missouri border. 

 
Figure 3.8: (Left) Range of Tesla Model 3 in July 2020 Heading East on US-54 as a 

Function of Rain on Road. (Right) Stopping Locations Based on Rain Level with Sooner 
Stops Needed Heading Out of Liberal, KS. Vehicle Mileage = 1000 miles, HVAC System 

On 
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With respect to snow, the left image in Figure 3.9 demonstrates the range of the Tesla 

Model 3 heading West on US-54 with varying levels of fresh snow on the ground in February 

2020. Like rain, the range of the EV drops linearly with the amount of snow cover. Now, three 

stops are needed for all scenarios to make it from the Missouri border to Liberal, KS with snow 

having a relatively significant impact on range. Both the rain and snow results indicate that EVs 

might consider linking to local weather stations to obtain rainfall/snowfall data and modify their 

range predictions accordingly. 

 
Figure 3.9: (Left) Range of Tesla Model 3 in February 2020 Heading West on US-54 as a 

Function of Snow on Road. (Right) Stopping Locations Based on Snow Level with 
Sooner Stops Needed Heading from the Missouri Border. Vehicle Mileage = 1000 miles, 

HVAC System On 

 

3.6 Model Exploration 

The constructed model is believed to be the simplest version that captures nearly all 

pertinent facets which impact EV driving range. As a final demonstration of its use, a vehicle 

comparison of the final state of charge driving on I-135 North and South is provided in Figure 3.10 

during August of 2020 with the HVAC system engaged and the vehicle aged 50,000 miles. The 

total distance on this respectively short interstate route is 95.9 miles; hence, all vehicles as 

indicated by the EPA should be able to traverse this route without needing to stop. Furthermore, 

an illustration of the predictive capability of the model is provided by simulating the 2021 VW 
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ID.4 for which only EPA data exists currently. Like earlier efforts, the calibration procedure of the 

VW ID.4 with the HVAC system off was accomplished to endeavor to match the MCT test results 

from the EPA (see Figure 3.11). Then, the same procedure as the Tesla Model 3 was done to 

estimate the mileage of the vehicle as a function of ambient temperature with the HVAC system 

off and on. Similar to the VW Golf, the SOCmin and SOCmax had to be expanded to their maximum 

values to achieve close to the EPA stated ranges and MPGe. The values do deviate more than the 

other models, likely due to the fact it employs newer battery technology (NCM712) but was 

assumed here to have the NCM622 battery profiles given the unavailability of literature data. 

 
Figure 3.10: Final State of Charge of Each Vehicle or the Vehicle Range When Driving 

from (Left) Wichita, KS to Salina, KS or (Right) Salina, KS to Wichita, KS on I-135 North 
and South, Respectively, During August of 2020 
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Figure 3.11: Estimated Range of the 2022 VW ID.4 Vehicle as a Function of Ambient 

Temperature with the HVAC System Off and On 

 

As indicated in Figure 3.10, not all vehicles can make the I-135 trip without recharging. 

All vehicles will need recharging in Wichita, KS, to make the 191.8-mile roundtrip journey. 

Interestingly, the VW ID.4 has the best range likely given the fact it has been estimated with a 

newer battery chemistry. So, while battery technology continues to improve, it does seem that 

significant improvements are still needed to achieve the 300-mile range that has often been 

discussed as one barrier to commercial success (Andre et al., 2017). Finally, it would be interesting 

to check the predictability of the VW ID.4 model once more data are available. 

3.7 Discussion and Recommendations 

The findings illustrate that EPA should reconsider how they generate the range of EVs 

since range anxiety is a significant issue for the consumer. As illustrated, weather, speed, age of 

the vehicle, heating and air conditioning all play a large role in decreasing the range of EVs. Thus, 

data should be taken at different temperatures demonstrating the impact of the HVAC system. 

Moreover, a new driving profile more indicative of the speeds seen during highway driving is 

required. Furthermore, estimates of the loss of range based on whether it is raining or snowing, 

and the age of the vehicle should be provided to the consumer. It is critical that these advances in 

knowledge be portrayed to the consumer otherwise their attitudes towards EVs will change and 

they will revert to using petroleum-based vehicles. For example, about 20% of early adopters in 
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California have switched back with their dissatisfaction with home charging being a primary factor 

(Lane, 2021). The data illustrated here demonstrates that more charging events will be needed 

given current battery technology; thus, potentially exacerbating the dissatisfaction of consumers. 

3.8 Predictive Spreadsheet 

Given the relative complexity of the model for others to use and the need to translate the 

findings for widespread usage as part of planning purposes, it was decided to extrapolate the 

findings into an Excel spreadsheet. To generate the spreadsheet, the six vehicles in Table A.1 were 

simulated over the routes I-135, US-54, I-70, and I-35 in both directions over each month of the 

year 2020. In addition, the influence of vehicle age (through mileage: 𝑚𝑚𝑖𝑖), the HVAC system (off 

and on), and the amount of rain on the road (𝑡𝑡𝑟𝑟𝑟𝑟) was included as variable parameters. From this 

information, an average range multiplier (𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚) across all vehicles was determined that can be 

used to modify the EPA stated range of the vehicle. After doing so, it was realized that the data 

could be coalesced into a curve-fit: 

Equation 3.2 

 

𝑹𝑹𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎 = (𝑨𝑨 + 𝑩𝑩 ∙ 𝒕𝒕𝒓𝒓𝒓𝒓)�𝑪𝑪 + 𝑫𝑫 ∙ 𝒎𝒎𝒊𝒊 + 𝑬𝑬 ∙ 𝒎𝒎𝒊𝒊
𝟐𝟐 + 𝑭𝑭 ∙ 𝒎𝒎𝒊𝒊 ∙ 𝒕𝒕𝒓𝒓𝒓𝒓� 

Using Matlab’s fmincon function, the values of 𝐴𝐴, 𝐵𝐵, 𝐶𝐶, 𝐷𝐷, 𝐸𝐸, and 𝐹𝐹 were fit to each route, 

whether the HVAC system was on or off, and the month of the year. In comparison to the model 

results, the curve-fit had around a 0.2% difference in 𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚. 

Figure 3.12 illustrates the input to the spreadsheet along with the model results. All the 

user has to accomplish is to provide the EPA stated range of the vehicle, the level of charge of the 

battery pack, the current mileage of the vehicle, whether the HVAC system is engaged, and if there 

is rain on the road. The calibrated curve-fit will then tell the user what the estimated range of that 

vehicle will be over the routes provided. 
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Figure 3.12: (Top) Inputs to the Model; (Bottom) Corresponding Estimated Range Based 

on Route and Month of the Year 

 

Questions Input to Model
What is the EPA stated range of the vehicle? 213 miles
What is the current battery pack charge level (0% - Empty; 100% - Full) 87%
What is the mileage (aka odometer) of the vehicle? 49,000 miles
Is the HVAC system ON or OFF? ON
How much rain is on the road in inches? 0.05 inches

I-135 North I-135 South US-54 East US-54 West I-70 East I-70 West I-35 North I-35 South
Jan. 83.5 87.6 111.5 85.4 98.7 75.6 85.9 78.5
Feb. 78.5 94.0 103.7 90.5 95.4 80.6 78.4 85.4
Mar. 103.7 79.4 107.5 107.4 86.8 94.7 94.0 89.0
Apr. 102.5 82.8 103.0 114.1 84.5 100.8 90.5 95.5
May 99.6 88.9 100.9 119.8 84.9 105.7 87.3 102.3
June 113.4 81.6 115.4 113.0 91.8 99.7 101.7 92.3
July 107.4 86.3 109.8 116.5 90.2 103.0 95.9 97.6
Aug. 107.6 86.2 110.9 115.6 91.0 102.1 96.5 96.7
Sept. 107.1 84.0 112.2 112.7 90.9 99.0 97.0 93.5
Oct. 101.7 83.4 101.4 115.5 83.5 102.1 89.2 97.0
Nov. 103.7 79.3 118.0 98.2 94.7 86.3 99.8 81.9
Dec. 80.9 92.3 109.8 87.7 99.3 77.8 82.6 82.1

Estimated Electric Vehicle Range in Miles based on Road Speed, Direction, and Ambient Conditions
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Chapter 4: Conclusions 

Range anxiety continues to be a primary factor for consumers when considering the 

purchase of an EV. While numerous EVs now boast ranges greater than 200 miles based on EPA 

data generated from the SAE J1634 testing procedure, the actual range of the EV on-road can be 

significantly less. Weather, weight, road conditions and grade, along with cabin conditioning, all 

play a large role in decreasing actual driving distance. To account for these facets, this effort 

endeavored to create the simplest model that accounts for all pertinent factors to generate a more 

realistic outcome of EV range. 

Initial calibration of six commercial vehicles to the EPA stated range data finds good 

accuracy with the model deviating by only 0.45 and 0.57 miles for the highway and city ranges, 

respectively. Of the six vehicles, five were estimated to have state of charge (SOC) ranges deemed 

suitable within research findings. Subsequently, predicting a Chevy Bolt in simulated chassis 

dynamometer tests finds only a 1-2% loss in range due to added weight or tire pressure. However, 

simulating the impact of road grade, wind, and vehicle speed over a true highway environment 

demonstrated significant losses up to 43.2% of the EPA stated range for a Nissan Leaf. In addition, 

ambient temperature effects resulted in the Leaf requiring around two times the amount of charging 

events. Overall, model predictions indicate losses (city or highway) from 24.9%-57.8% at 20 ºF to 

8.1%-37.5% at 95 ºF for the vehicles simulated. 

Battery chemistry was also found to play a role in EV range as the vehicle ages. The 

simulated Jaguar I-Pace with a NCM622 battery had a respective 43.7% decrease in range at 

100,000 miles, whereas the Tesla Model S with a NCA battery predicted a 53.1% decrease in range 

at the same vehicle mileage. Here, the respectively greater decrease in capacity of the NCA battery 

with cycles resulted in the Tesla losing a larger percentage of its range with mileage. Subsequent 

model expansion that was employed to include rain and snow data demonstrates different stopping 

locations amongst a lower speed route that suggests in-vehicle estimations of range might need to 

link to local weather stations to modify their algorithms. Model exploration and expansion to the 

VW ID.4 finds significant efforts are still needed in battery chemistry to achieve a true 300-mile 

on-road range for lower cost EVs. It is recommended that the EPA reconsider their range 
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estimations and provide more realistic values expected by the consumer given possible driving 

profiles in Kansas based on the time of year and the age of the vehicle. Finally, a respectively 

simple spreadsheet was created that allows for users to quickly estimate the range of an electric 

vehicle based on route, time of the year, battery pack charge, age of the vehicle, whether the HVAC 

system is engaged, and if rain is present. 
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Appendix 

Table A.1: Pertinent Vehicle Parameters for Six Commercial EVs 

Vehicle and 
Model Year 

2017-2019 
Chevy Bolt 

2018-2020 
Nissan Leaf 

2019 Jaguar 
I-Pace 

2019 Tesla 
Model S AWD 

75D 

2019 Tesla 
Model 3 Std. 
Range RWD 

2019 VW e-
Golf 

AAA Test 
Data 

Available 
Yes Yes No Yes No Yes 

Coefficient of 
Drag [-] 0.32 0.28 0.29 0.24 0.23 0.25 

Vehicle 
Height [in] 62.8 61.6 61.3 56.5 56.8 58.3 

Vehicle Width 
[in] 69.5 70.5 74.6 77.3 72.8 70.8 

Frontal Area 
[ft2] 23.80 23.27 24.92 21.81 21.36 22.04 

Vehicle Mass 
[lbm] 3563 3433 4718 4883 3552 3494 

Unloaded Tire 
Diameter [in] 25.5 24.9 29.6 27.7 29.4 24.9 

Tire pressure 
[psi] 38 36 37 45 37 41 

Tire 
Revolutions 

per Mile 
[rev/min] 

815 836 703 751 708 836 

Final Drive 
Ratio [-] 7.05 8.19 9.06 9.73 9 9.75 

Motor Type 

Permanent 
Magnet 

Synchronous 
A 

Permanent 
Magnet 

Synchronous 
B 

Permanent 
Magnet 

Synchronous 
B 

AC Induction 

Permanent 
Magnet 

Synchronous 
B 

Permanent 
Magnet 

Synchronous 
B 

Maximum 
Motor Speed 

[rpm] 
8810 10390 13000 18000 13800 12000 

Maximum 
Brake Torque 

[ft-lbf] 
266 237 513 485 318 214 

Maximum 
Brake Power 

[hp] 
201 148 397 518 283 134 

Maximum 
Regeneration 

Power [hp] 
80 58 156* 80 156* 94 

Maximum 
Speed [mph] 91 89.5 124 139.8 130 93.2 
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Cabin Volume 
[ft3] 94.4 116.0 102.6 94 97 93.5 

Battery 
Chemistry [-] NCM622 NCM523 NCM622 NCA1 NCA2 NCM 

Batteries in 
Series [-] 96 96 108 96 96 88 

Batteries in 
Parallel [-] 3 2 4 74 46 3 

Nominal Pack 
Voltage 
[VDC] 

350 350 388 400 350 370 

Nominal Pack 
Capacity [Ah] 171.4 115 222.9 245 230 111 

Calculated 
Pack 

Capacity [lbm 
ft2/s2] 

5.125E+09 3.439E+09 7.389E+09 8.372E+09 6.877E+09 3.509E+09 

Initial Cycles 
for EPA Tests 

[-] 
4 6 4 6 4 8 

SOCmin / 
SOCmax 0.1 / 0.8305 0.1 / 0.9071 0.1 / 0.8664 0.1 / 0.8298 0.1 / 0.8571 0.01 / 0.9946 

EPA 
City/Highway 

[mi] 
255.1 / 217.4 165.2 / 132.4 244.8 / 220.8 255.0 / 264.6 230.5 / 206.3 130.6 / 117.9 

Model 
City/Highway 

[mi] 
254.6 / 218.0 165.3 / 132.5 244.8 / 220.7 255.6 / 265.1 229.6 / 205.7 131.2 / 116.4 

Unadjusted 
MPGe 

City/Highway 
182.2 / 157.4 177.3 / 142.1 114.1 / 102.9 137.9 / 142.7 138.2 / 123.8 126.0 / 111.0 

Model MPGe 
City/Highway 182.9 / 156.6 177.3 / 142.1 114.1 / 102.9 137.9 / 143.0 138.2 / 123.8 125.7 / 111.5 

HVAC Off 
20°F 

& 95°F 
City/Highway 

Loss [mi] 

-31 / -15 
-6 / -2 

-19 / -9 
-2 / -2 

N/A 
-32 / -21 
-19 / -14 

N/A 
-13 / -3 
-7 / 0 

HVAC Off 
Model 20°F 

& 95°F 
City/Highway 

Loss [mi] 

-28.6 / -16.2 
-9.4 / -5.1 

-17.3 / -10.9 
-5.6 / -3.5 

-31.4 / -25.5 
-10.6 / -8.5 

-31.5 / -27.3 
-10.6 / -9.0 

-24.8 / 21.4 
-8.2 / -7.0 

-10.0 / -7.7 
-3.3 / -2.5 

HVAC On 
20°F 

& 95°F 
City/Highway 

Loss [mi] 

-148 / -68 
-65 / -22 

-58 / -26 
-24 / -8 

N/A 
-109 / -69 
-48 / -25 

N/A 
-65 / -20 
-34 / -9 
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HVAC On 
Model 20°F 

& 95°F 
City/Highway 

Loss [mi] 

-145.1 / -74.5 
-69.5 / -17.6 

-50.3 / -33.0 
-21.2 / -13.3 

-95.1 / -62.2 
-53.8 / -24.5 

-99.4 / -75.7 
-48.2 / -25.1 

-132.8 / -86.1 
-86.1 / -20.8 

-50.5 / -29.2 
-30.2 / -10.8 

Cr,mult 1.0428 1.0596 1.0428 0.9045 0.9884 0.9012 

γ 0.8786 0.9222 0.8786 0.8851 1.0069 0.8861 

χ 1.0391 1.0592 1.0391 1.0095 1.0552 1.0042 

δ∗∗ 0 0 0 1.7714 0 0.4936 

aEPA [lbf] 14.2 8.330 -13.983 -1.500 17.400 -6.205 

bEPA [lbm/s] 0.8863 2.7705 6.1906 0.2582 -3.2752 0.9998 

cEPA [lbm/ft] 0.2889 0.2887 0.2760 0.2332 0.2455 0.2594 

arr [lbf] 1.1278E-02 6.7031E-03 -8.6277E-03 -9.5951E-04 1.3725E-02 -5.1430E-03 

brr [lbm/s] 7.0409E-04 2.2298E-03 3.8197E-03 1.6215E-04 -2.5798E-03 8.2834E-04 

crr [lbm/ft] 5.9856E-06 3.8527E-05 5.5655E-06 2.5502E-05 5.0418E-05 4.622E-05 

aaux [hp] – 
HVAC off 1.2940 8.3547E-01 2.0130 2.4572 1.6177 4.9124E-01 

baux [lbf] – 
HVAC off 13.740 16.165 33.002 32.937 1.330 89.535 

caux [lbm/s] – 
HVAC off 3.4225 8.0910 22.904 8.8994 25.611 2.22097 

αaux – HVAC 
off 2.3446E+00 2.2228E+00 1.8577E+00 1.6729E+00 1.8577E+00 1.0136E+00 

Heating 
System Resistance Heat Pump Heat Pump Resistance Resistance Heat Pump 

aaux [hp] – 
HVAC on 4.1808E-02 8.4216E-03 8.2343E-03 2.3231E-02 1.8047E-02 1.3332E-02 

baux [lbf] – 
HVAC on 1.3783E-01 1.6164E-01 7.7890E-02 3.0929E-01 1.4173E-01 9.7108E-02 

caux [lbm/s] – 
HVAC on 2.0025E-02 8.0028E-02 4.9161E-02 2.9624E-02 1.5192E-02 6.9020E-02 

aYM [lbm ft/s2] 2.1176E+03 2.2330E+03 6.5384E+03 2.3234E+03 5.3000E+03 3.9608E+03 

bYM [lbf/°F] -1.797 -1.750 -3.774 -1.641 -4.087 -1.886 

cYM [lbf/°F2] 2.3476E-02 2.5647E-02 4.8066E-02 2.3895E-02 5.6207E-02 2.1592E-02 

dYM [lbf/°F3] -1.2331E-04 -1.4232E-04 -2.5094E-04 -1.3689E-04 -3.0495E-04 -1.1497E-04 

eYM [lbf/°F4] 1.6666E-08 7.2918E-08 1.5045E-07 1.3822E-07 1.3924E-07 1.6276E-07 

fYM [lbf/°F5] 2.0054E-09 1.4282E-09 4.0901E-09 1.0707E-09 3.7868E-09 2.2958E-09 
*Guesses 
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Table A.2: Parameters for the 2021 VW ID.4 
Coefficient of Drag [-] 0.28 

Vehicle Height [in] 64.4 

Vehicle Width [in] 72.9 

Frontal Area [ft2] 30.2* 

Vehicle Mass [lbm] 4517 

Unloaded Tire Diameter [in] 29.2 

Tire pressure [psi] 50 

Tire Revolutions per Mile [rev/min] 692 

Final Drive Ratio [-] 12.99 

Motor Type Permanent Magnet Synchronous 
B 

Maximum Motor Speed [rpm] 16000 

Maximum Brake Torque [lbm 
ft2/s2] 7333 

Maximum Brake Power [hp] 201 

Maximum Regeneration Power 
[hp] 94* 

Maximum Speed [mph] 99.4 

Cabin Volume [ft3] 99.9 

Battery Chemistry [-] NCM712 (used NCM622 data) 

Batteries in Series [-] 96 

Batteries in Parallel [-] 3 

Nominal Pack Voltage [VDC] 400 

Nominal Pack Capacity [Ah] 205 

Calculated Pack Capacity [lbm 
ft2/s2] 7.005E+09 

Initial Cycles for EPA Tests [-] 4 

SOCmin / SOCmax 0.1 / 0.9999 

EPA City/Highway [mi] 278.5 / 237.1 

Model City/Highway [mi] 270.8 / 233.4 

Unadjusted MPGe City/Highway 107 / 91 

Model MPGe City/Highway 120.8 / 104.1 

HVAC Off 20°F 
& 95°F City/Highway Loss [mi] 

N/A 

HVAC Off Model 20°F 
& 95°F City/Highway Loss [mi] 

-27.7 / -21.4 
-9.0 / -6.6 

HVAC On 20°F 
& 95°F City/Highway Loss [mi] 

N/A 

HVAC On Model 20°F -151.0 / -76.4 
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& 95°F City/Highway Loss [mi] -96.4 / -22.2 

Cr,mult 1.0428 

γ 0.8786 

χ 1.0391 

δ 0 

aEPA [lbf] 14.635 

bEPA [lbm/s] 4.1103 

cEPA [lbm/ft] 0.2734 

arr [lbf] 1.0410E-02 

brr [lbm/s] 2.9202E-03 

crr [lbm/ft] 2.1735E-05 

aaux [hp] – HVAC off 1.8738 

baux [lbf] – HVAC off 1.8039E-01 

caux [lbm/s] – HVAC off 27.249 

αaux – HVAC off 1.8577E+00 

Heating System Resistance 

aaux [hp] – HVAC on 1.3329E-02 

baux [lbf] – HVAC on 1.0478E-01 

caux [lbm/s] – HVAC on 1.1198E-02 

aYM [lbm ft/s2] 7.6684E+03 

bYM [lbf/°F] -5.9129 

cYM [lbf/°F2] 8.1301E-02 

dYM [lbf/°F3] -4.4093E-04 

eYM [lbf/°F4] 1.9642E-07 

fYM [lbf/°F5] 5.5121E-09 
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